Congruent: "equal" exactly the same measurement Included Angle: angle between 2 sides LC is the included L between BC & AC Shared Side: a side 2 triangles share **Vertical Angles:** L's directly across an intersection when 2 lines cross * They are ALWAYS ~ a) \overline{MT} and \overline{TR} **b)** \overline{TQ} and \overline{RT} LMTR or Late or LRTM LRTQ c) \overline{MR} and \overline{TM} d) \overline{TQ} and \overline{QR} 2RMT or LTQR or LTMR OrLM LRQT or LQ Ex. 2: Given ÆC≅ ÆCR label and name the pairs of corresponding ANGLES LA ~ LP LB = LQ LC = LR SIDES. AB = PQ BC & QR AC = PR BC | | D' .4 | |--|----------------| | Postulate/Theorem | Picture | | Side-Side (SSS) | | | Congruence Postulate: | L | | If all corresponding sides on BOTH triangles are congruent, then triangles are $\stackrel{\frown}{=}$. $JK \cong XY$ $FL \cong YZ$ $JL \cong XZ$ SO $\Delta JKL \cong \Delta XYZ$ | K Y X TO Z | | Side-Angle-Side (SAS) | | | Congruence Postulate: | | | If 2 corresponding sides | E | | If 2 corresponding sides and their included 6 are | Å | | = between 2 triangles, | / L | | then the 2 triangles are = | \int_{F} | | FE ~ TV | D T | | LE 2 LV | | | F = VU | U | | DPEF ≅ DTVU | | Vertical L'S Decide whether enough information is given to prove that the triangles are congruent. If there is enough information, state the congruence postulate you would use. Ex. 3: Ex. 4: Ex. 5: Ex. 6: Ex. 7: Ex. 8: In each of the following pairs of triangles, add the required markings in order to know that the triangles are congruent by the given postulate. Ex. 9: by SSS Ex. 10: by SAS **Ex. 11: by SSS** **Ex. 12:** by **SAS**